原则一:要控制模型含量。大模型只应用于输入和输出环节,中间需要控制其联想能力,以确保产生结果的可用性。 原则二:回到纯文本逻辑思考。一个 GUI 操作界面,界面由操作表单加图文结合,用户点击确定就可以完成操作。但如果要开发 AI 产品,就要忘掉这个图形用户界面,先回到思考的底层逻辑上,要先确保底层逻辑能通过纯文本上说清楚,而不是想着用什么样的人机交互来让用户更好地理解产品。 原则三:能选择就不录入。录入是一个复杂的过程,当能够询问用户是或否时,就给出是或否的选项,而不是让用户打字,这个过程很累;如果能让用户点头或摇头,就尽量让他们点头或摇头;如果不能让用户点头或摇头,就让他们选择默认选项,并且默认选项不能超过四个;如果既不能让用户点头摇头,也不能让他们选择 ABCD,那就让他们填空。实在不能填空了,再让用户输入。 原则四:直接呈现答案,再做解释。如果 GPT 回答的时候先重复一下问题,分析一下这个问题背后可以这么解,然后给出一套逻辑,最后才给出答案,这样的体验非常考验用户耐心。所以有赞 AI 设计的第四个原则就是尽早给出答案,再说其他的。这里有一个有趣的衡量标准,就是找有阅读恐惧的人来测试。输出的编排逻辑一定要让阅读恐惧症患者在阅读时感到舒适,这样才是好的。 原则五:给用户交付可用的结果。AIGC 主要提供创意供给,用户需要在大量创意中进行选择和修改,最终才能获得可用的结果。但 SaaS 产品需要给用户提供确定性的结果,而不仅仅是创意。在内容行业等领域,创意的供给是有价值的,但在 SaaS 或企业级应用中,用户更需要正确的结果。 原则六:让人类来按下「回车」键。决策不只是「客观」就够了,潜意识、情绪、偏见里面固然有不客观,但是也有梦想、喜欢、爱,有了这些才是完美的决策。 原则七:功能可以丰富,但不能堆积。每一个 SaaS 产品在一开始都很好用,但随着时间的推移,它会变得越来越复杂,当然也会越来越强大。从某种程度上来说,拥有更多的功能才能带来更好的体验,如果没有这些功能,就无从谈起体验。但是当拥有这些功能之后,易用性可能就没那么好了。通过左边的导航地图,让你找到最常用和最需要的功能。另一方面,你可以唤起一个叫做智能助手的东西,通过命令式对话告诉它你想干什么,它可以一键直达某个功能,或者一键直接帮你执行你想要的自动化任务和操作。
四个应用方向: 第一是 Copilot,就是助手。它能够帮助客户快速地使用产品,更好地使用产品。 第二是 Agent,自动化的能力。自动化的发报告,自动化的预警,自动化的去完成很多事情。例如,商家可以设置库存促销规则,如还有 500 件库存时打 5 折,剩下 200 件时打 6 折,以此类推。那么用户就不需要时刻盯着去改库存,因为这些事情都可以通过自动化来完成。 第三是 Insight,洞察建议能力。它能够总结周报,告诉你做得好不好,给你建议,你可以怎么改善。 第四是 AIGC,生成创意的能力。生成营销文案,优化商品标题,设计营销推广海报,优化商品图片等等。