所谓Deep Research ,针对的是所有搜索资料-分析-得出结论的研究性问题。具体到各行各业的应用场景中,可能就有“这个零食的销售额怎么下降了?”、“这个保险产品的赔付率为什么上升了?”、“我要去潮汕旅游,有什么好吃好玩的推荐”等等问题。这种问题中,核心要解决几个问题:
- 找什么资料?
- 什么资料符合标准?
- 根据当前的资料还能有什么启发?
- 找到什么时候停止?
- 用什么方式来解读这些资料?
可以适用以下架构:
@startuml
!define MAIN_ORANGE #FF8C00
!define LIGHT_BLUE #87CEEB
!define LIGHT_GREEN #90EE90
!define LIGHT_YELLOW #FFFACD
!define LIGHT_PURPLE #D8BFD8
skinparam defaultFontName Arial
skinparam defaultTextAlignment center
skinparam rectangle {
BorderColor black
BackgroundColor LIGHT_YELLOW
roundCorner 15
}
rectangle "触发源" <<Process>> ##LIGHT_GREEN {
[用户问题] as UserQ
[上游调用] as warnQ
[系统自动触发\nAuto-Approve] as AutoQ
}
rectangle "用户交互" <<Interface>> ##LIGHT_GREEN {
[问题澄清] as QC
note right of QC : qwen-7b
}
rectangle "决策模块" <<Decision>> ##MAIN_ORANGE {
[context理解&决策] as MultiTurn
note right of MultiTurn : qwen-72b
}
rectangle "数据分析模块" <<Data>> ##LIGHT_PURPLE {
[查询专家框架] as ExpertFrame
note left of ExpertFrame : qwen-7b
[按专家框架 or 发散思考] as DivergentThinking
note right of DivergentThinking : deepseek-r1
[语义实体值识别] as EntityRecog
note right of EntityRecog : qwen-7b
rectangle "多方向搜集数据" <<SubSystem>> {
[关键词召回] as Keywords
note right of Keywords : 正则
[API调用/SQL] as APICall
note bottom of APICall : qwen-7b
[数据清洗&总结] as DataAssembly
note right of DataAssembly: qwen-7b
}
[宏Prompt] as UserIdentity
[风险报告生成] as ReportGen
note right of ReportGen: deepseek-r1
}
rectangle "推理模块" <<Process>> ##LIGHT_BLUE {
[推理回答] as Reasoning
note right of Reasoning: deepseek-r1
}
rectangle "问题推荐模块" <<Process>> ##LIGHT_GREEN {
[相关问题/动作推荐] as Recommendation
note right of Recommendation : qwen-7b
}
' Connections
UserQ --> MultiTurn
AutoQ --> MultiTurn
warnQ -> MultiTurn
MultiTurn --> QC
QC --> MultiTurn
MultiTurn --> ExpertFrame : 需要数据支撑
MultiTurn --> Reasoning : 不需要数据支撑
ExpertFrame --> EntityRecog : 可能无匹配框架
EntityRecog --> DivergentThinking: 条件明确
EntityRecog --> QC : 条件不明确
DivergentThinking --> Keywords
DivergentThinking --> APICall
Keywords --> DataAssembly
APICall --> DataAssembly
DataAssembly --> ReportGen
UserIdentity --> ReportGen
ReportGen --> Recommendation
Reasoning --> Recommendation
Recommendation --> AutoQ : 推荐问题\n作为新输入
@enduml
目前文档搜索类产品的局限性集中在:
1.用户提出的问题太复杂,需要深层次分析能力,在现有文档中没有回答, 它们应该是人工智能自行生成的全新见解。
2.答案不是单纯的文字,而是图表、表格、图像,无法直接输出结构化数据。
3.输出结果非常重要,容错率很低,因此过程不能依赖黑匣子系统。
Hebbia以引用的形式提供答案,并且所有的这些都在一个电子表格的形式中呈现。对于每个文档(行!),你将得到一组问题(列!)的答案,除了总结每个查询外,它还展示了得出结论的来源和各个步骤,并允许用户验证,提供AI处理流程的透明度,建立用户对输出结果的信任和信心。